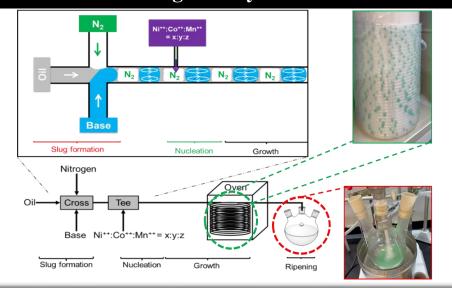


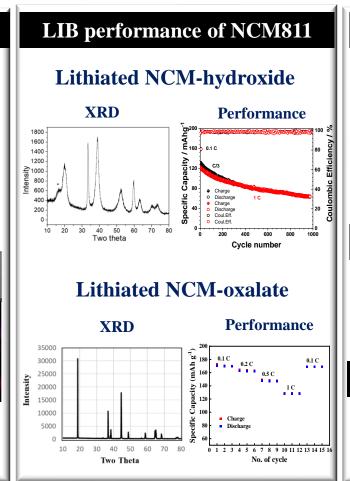
Advanced Slug-flow Manufacturing of Uniform and Tunable Battery Cathode Particles (Project ID: bat564)

*OAK RIDGE
National Laboratory


Ram B. Gupta¹*, Mo Jiang¹, Mingyao Mou¹, Arjun Patel¹, Jethrine H. Mugumya¹, Sourav Mallick¹, Michael L. Rasche ¹, Herman Lopez², M P Paranthaman³

zenlabs

Goal of the Project


- ➤ Develop slug-flow as a platform for controlled synthesis of uniform NCM (nickel-cobalt-manganese oxide) microparticles with controlled composition
- ➤ Tune lithium-ion battery (LIB) performance via NCM microparticle properties

Advanced Slug-flow Synthesis Platform

NCM811 precursors NCM811-hydroxide NCM811-oxalate Spherical NCM811oxalate with uniform

particle size

Summary

- ➤ Slug-flow platform is successfully utilized to synthesize NCM811-precursor particles
- ➤ High performance LIB is fabricated

Future work

Synthesis of low cobalt NCM with surface coatings to improve cycling stability of LIB

Reference

J. Electrochem. Soc.2022, 169, 020565

PI: Ram B. Gupta (Virginia Commonwealth University¹)

Co-PIs: Mo Jiang (VCU¹), M. P. Paranthaman (ORNL³), Herman Lopez (Zenlabs²)

Funding: DOE/EERE/ Advanced Manufacturing Office (DE-EE0009110)